Drew Youngren dcy2@columbia.edu
Operation | Notation | Formula |
---|---|---|
Magnitude | $| \mathbf v |$ | $\sqrt{\sum v_i^2}$ |
Scalar Multiplication | $c \mathbf v$ | $\left\langle c v_1, \ldots, c v_n \right\rangle$ |
Vector Addition | $\mathbf v + \mathbf w$ | $\left\langle v_1 + w_1, \ldots, v_n + w_n \right\rangle$ |
How do you turn a frog into a prince?
\[(1-t)\text{frog} + t \text{ Prince}\]
t = 0
Let $\mathbf v = \left\langle v_1, \ldots, v_n \right\rangle$ and $\mathbf w = \left\langle w_1, \ldots, w_n \right\rangle$. The dot product (or scalar product or inner product ) is:
\[ \vec v \cdot \vec w = \sum_{i=1}^n v_i w_i \]$\langle 4,2, -1 \rangle \cdot \langle -2,6, 0 \rangle = -8 + 12 + 0 = 4 $
$\begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \\ 0 \end{bmatrix} = \begin{matrix} -8 \\ +12 \\ \, \end{matrix} = 4 $
$\vec i\cdot \vec i = \vec j\cdot \vec j = \vec k\cdot \vec k = 1$
$\vec i\cdot \vec j = \vec j\cdot \vec k = \vec k\cdot \vec i = 0$
: $\text{Subtotal} = \text{Qty} \cdot \text{Price}$
does NOT mean
\[\vec a = \vec b \]When is this large?
\[\vec v \cdot \vec w = v_1 w_1 + v_2 w_2 + v_3 w_3 + v_4 w_4 \]What is the angle between $ \langle 2, 2 , 1 \rangle$ and $\langle -3, 2, 6 \rangle$ ?
Which multiple of $\vec w$ gets closest to $\vec v$?
Show that for every $\vec w \neq \vec 0$, $\vec v - \proj_{\vec w} \vec v$ is orthogonal to the base $\vec w$.
\[ \begin{align*} (\vec v - \proj_{\vec w} \vec v)\cdot \vec w &= (\vec v - \frac{\vec v \cdot \vec w}{\vec w \cdot \vec w} \vec w)\cdot \vec w \\ &= \vec v \cdot \vec w - \frac{\vec v \cdot \vec w}{\vec w \cdot \vec w} (\vec w\cdot \vec w) \end{align*} \]
Suppose one wants to walk to another town that is a mile east and 3 miles north from their current location but can only walk exactly northeast or northwest. How long is the most efficient walk?
There is a special vector product, or cross product in $\RR^3$ only. \[\vec v \times \vec w = \vec u\] "A vector cross a vector is a vector."