Lecture 06   

Arc Length & Curvature

APMA E2000

Drew Youngren dcy2@columbia.edu

$\gdef\RR{\mathbb{R}}$ $\gdef\vec{\mathbf}$ $\gdef\bv#1{\begin{bmatrix} #1 \end{bmatrix}}$ $\gdef\proj{\operatorname{proj}}$ $\gdef\comp{\operatorname{comp}}$

Announcements

  • Recitation 03 this week.
  • Quiz 2 (HW2 topics) this week.
  • HW3 due next Tues

1-minute review

Motion
  • position: $\vec r(t)$
  • velocity: $\vec r'(t)$
  • acceleration: $\vec r''(t)$
  • speed: $|\vec r'(t)|$

Example

Suppose a particle starts at the origin with initial velocity $\left\langle 1, 0 \right\rangle$ and acceleration \[ \vec a(t) = \begin{cases} \left\langle -t, 1 \right\rangle, \text{ if } t \leq 1 \\ \left\langle 1, -t-1 \right\rangle, \text{ if } t > 1 \\ \end{cases}. \] Find its position at $t = 2$.

Solution

\[ \vec v(t) = \begin{cases} \left\langle -\frac12 t^2 + 1, t \right\rangle, \text{ if } t \leq 1 \\ \left\langle t - \frac12, -t - \frac12 t^2 + \frac52 \right\rangle, \text{ if } t > 1 \\ \end{cases}. \]

\[ \vec x(t) = \begin{cases} \left\langle -\frac16 t^3 + t, \frac12 t^2 \right\rangle, \text{ if } t \leq 1 \\ \left\langle \frac12 t^2 - \frac12 t + \frac56, \frac12 t^2 - \frac16 t^3 + \frac52 t - \frac43 \right\rangle, \text{ if } t > 1 \\ \end{cases}. \]

Graph of solution

Definition

A parametrized curve $\vec r(t)$ is called smooth provided \[\vec r'(t) \neq \vec 0\] for all $t$. A smooth curve has a well-defined unit tangent vector \[\vec T(t) = \frac{\vec r'(t)}{|\vec r'(t)|}\]

A counterexample might express this more easily. \[ \vec r(t) = \left\langle t^2, t^3 \right\rangle \]

Arc Length

Idea

To measure the arc length of a path in space, we would like to just "straighten it out" (without stretching) and use the distance formula, but this is difficult, mathematically.

Instead, measure distances between sample points along the curve.

Formula

For $\vec r(t)$ with $a \leq t \leq b$, we define $t_i = a + i \frac{b - a}{N}$ and then arc length of the curve is

\[ s = \lim\limits_{N\to\infty}\sum_{i = 1}^N |\vec r(t_i) - \vec r(t_{i - 1})|\]

Formula

For $\vec r(t)$ with $a \leq t \leq b$, we define $t_i = a + i \frac{b - a}{N}$ and then arc length of the curve is

\[ s = \lim\limits_{N\to\infty}\sum_{i = 1}^N \frac{|\vec r(t_i) - \vec r(t_{i - 1})|}{\Delta t} \Delta t \]

\[ \to \int_a^b |\vec r'(t)|\,dt \]

Example

Find the arc length of one coil of a helix. \[\vec r(t) =\left\langle \cos t, \sin t, t \right\rangle \]

\[s = \int_0^{2\pi} |\left\langle -\sin t, \cos t, 1 \right\rangle|\,dt \] \[ = \int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t + 1}\,dt = \int_0^{2\pi} \sqrt2\,dt = 2\sqrt 2 \pi \]

Reparametrization

The same path in space can be traced in any number of ways—fast, slow, backwards.
Quick example

$\langle \cos t, \sin t\rangle$ traces out the unit circle over the interval $[0,2\pi]$.

$\langle \cos (6\pi t), \sin (6\pi t)\rangle$ traces out the unit circle much "faster", over the interval $[0,\frac13]$. Take the derivatives of each of the above to see this.

$\langle \cos (\pi \sin t), \sin (\pi \sin t)\rangle$ traces out the unit circle "back and forth."

Definition

Consider a smooth curve $\vec r(t)$ for $a \leq t \leq b$. A smooth reparametrization is a choice of scalar function $f(s)$ with $f'(s) > 0$, $f(c) = a$, and $f(d) = b$ such that \[\vec q(s) = \vec r(f(s))\] traces out the same path.

Theorem

Arc length is independent of parametrization. Using the notation of previous slide,

\[ \int_c^d \left| \vec q '(s) \right|\,ds = \int_c^d \left| \frac{d}{ds} \vec r (f(s)) \right|\,ds \] \[ = \int_c^d \left| \vec r '(f(s)) \right| f'(s)\,ds \qquad \begin{cases} w =f(s) \\ dw = f'(s)\,ds \\ \end{cases} \] \[ = \int_a^b |\vec r'(t) |\,dt \]

Arc Length as a Function

\[ s = f(t) = \int_a^t |\vec r'(w)|\,dw. \]

Arc Length as a Function

\[ s = f(t) = \int_a^t |\vec r'(w)|\,dw. \]

  • $\frac{ds}{dt} = |\vec r'(t)|$
  • For smooth $\vec r$, $f$ is invertible, $t = f^{-1}(s)$.

\[\frac{d}{ds} \vec r(f^{-1}(s)) = \vec r '(f^{-1}(s)) (f^{-1})'(s) = \vec r'(t) \frac{1}{f'(f^{-1}(s))}\]

\[ = \frac{\vec r'(t)}{|\vec r'(t)|} = \vec T \]

Reparametrization by arc length

Using the definition from the previous slide, a curve is paramtrized by arc length $ \vec q(s) $ for $0 \leq s \leq L$ if $|\vec q'(s)| = 1$.

Example

Parametrize the curve \[ \langle e^{-t}, 1-2e^{-t}, 2e^{-t} \rangle \] for $t \geq 0$ by arc length.

Curvature

We aim to quantify how curvy a curve can be.

Which of these paths is "curviest" at the origin?

Definition

Recall that $\vec T$ is the unit tangent vector to a curve $\vec r(t)$. The curvature $\kappa$ of $\vec r$ at a given point is given by \[ \kappa = \left|\frac{d\vec T}{ds} \right|. \]

That is, we measure how much the direction changes per unit arc length. Alternatively, \[\kappa = \frac{|\vec T'(t)|}{|\vec r'(t)|}\]

Alternative Formula

\[\kappa = \frac{|\vec T'(t)|}{|\vec r'(t)|}\]

Because \[\left| \vec T'(t) \right| = \left|\frac{d\vec T}{dt}\right| = \left|\frac{d\vec T}{ds}\frac{ds}{dt} \right|= \kappa |\vec r'(t)|. \]

Example

Find the relation between the radius $R$ of a circle and its curvature.

$\vec r(t) = \left\langle R\cos t, R\sin t \right\rangle$ has arclength $s = Rt$. Thus we parametrize by arc length \[\vec q(s) = \left\langle R\cos \frac{s}{R}, R\sin \frac{s}{R} \right\rangle \]

\[\kappa = |\vec q''(s) |= \frac{1}{R} \]

Demo

Use a curve plot in 3Demos to explore a curve, its reparametrization by arc length, and the so-called osculating circle, which best approximates the curve at a point with a circle with a matching $\kappa$ value.

Learning Outcomes

You should be able to...
  • Parametrize simple curves such as lines, graphs, and circles.
  • Match plots of curves with their parametrizations.
  • Apply and interpret rules of differential calculus to vector-valued functions.