Drew Youngren dcy2@columbia.edu
Let $\vec r(t), a \leq t \leq b$ be a smooth parametrization of a curve $\mathcal C$.
\[\begin{align*} \text{tangent vector}&:& \vec r'(t) \\ \text{unit tangent vector} &:& \vec T(t) = \frac{\vec r'(t)}{|\vec r'(t)|} \end{align*} \]Let $\vec r(t), a \leq t \leq b$ be a smooth parametrization of a curve $\mathcal C$.
\[\begin{align*} \\ \text{arc length} &:& s = \int_a^t |\vec r'(u)|\,du \\ \text{curvature} &:& \kappa = \left| \frac{d\vec T}{ds} \right| = \frac{|\vec T'(t)|}{|\vec r'(t)|} \end{align*}\]A scalar field (or function of several variables) is simply a function of the type \[f:\RR^n \to \RR.\]
\[\operatorname{dom} f = \{(x,y)\in \RR^2: f(x,y)\in \RR\}.\]
\[\operatorname{im} f = \{f(x,y)\in \RR: (x,y)\in \operatorname{dom} f\}.\]
"Input vector, output scalar" is a little vague when it comes to implementation. One may have to coax one's data into the right form depending how the function is defined.
A level set for a scalar field $f$ is the set of all input values that give a particular output, $k$. \[ f^{-1}(k) = \{ \vec x \in \operatorname{dom} f : f(\vec x) = k\}\]
The level sets of $f(x,y) = x^2 + y^2$ are circles.
The level sets of $f(x,y,z) = x^2 + y^2 + z^2$ are spheres.
Find the domain, image, and sketch a few level curves for each function below.
Find the domain, image, and sketch a few level curves for each function below.
The definition of limit for a function of several variables needs barely be changed.
Every elementary functions is continuous on its domain. That includes:
\[ f(x,y,z) = \frac{\sin(x^2) - 3yz + \log_2 \frac{12 x z^2 - y}{\sqrt[3]{y^2 + z^2 + 7}}}{\tan^{-1}(|x|) + y^4z^2 + 4} \]
\[ \lim\limits_{(x,y,z) \to (0,-1,0)} f(x,y,z) \] \[ = -\frac14 \]
Weird things can happen in several variables.
Compute the following limit or show it does not exist. \[\lim\limits_{(x,y) \to (0,0)}\frac{xy}{x^2 + y^2} \]
The limit does not exist.
Compute the following limit or show it does not exist. \[\lim\limits_{(x,y) \to (0,0)}\frac{x^2y}{x^2 + y^2} \]
Solution...
By substitutin $x = r \cos \theta$, $y = r\sin \theta$ we make the limit \[ \lim\limits_{(x,y) \to (0,0)} f(x,y) \] becomes
\[\lim\limits_{r \to 0^+} f(r \cos \theta, r \sin \theta). \]
\[\lim\limits_{(x,y) \to (0,0)}\frac{x^2y}{x^2 + y^2} = \lim\limits_{r \to 0^+} \frac{(r^2 \cos^2 \theta)r \sin\theta}{r^2\cos^2\theta + r^2 \sin^2 \theta}\]
\[-1 \leq \cos^2 \theta \sin \theta \leq 1\]
\[\lim\limits_{r \to 0^+} -r \leq \lim\limits_{r \to 0^+} \frac{r^3 \cos^2 \theta \sin\theta}{r^2} \leq \lim\limits_{r \to 0^+} r\]
\[ \lim\limits_{r \to 0^+} r \cos^2 \theta \sin \theta = 0 \]