Lecture 15       

Changing Coordinates

APMA E2000

Drew Youngren dcy2@columbia.edu

$\gdef\RR{\mathbb{R}}$ $\gdef\vec{\mathbf}$ $\gdef\bv#1{\begin{bmatrix} #1 \end{bmatrix}}$ $\gdef\proj{\operatorname{proj}}$ $\gdef\comp{\operatorname{comp}}$

Announcements

  • HW8 due after break
  • Quiz 5 this week
    • Local min/max
    • Optimization

1-minute review

Double Integrals

\[ \iint\limits_{\mathcal R} f\,dA =\int_a^b \int_{g(x)}^{h(x)} f(x,y)\,dy\,dx. \]

Triple Integrals

\[ \iiint\limits_{\mathcal E} f\,dV =\int_a^b \int_{g(x)}^{h(x)} \int_{j(x,y)}^{k(x,y)}f(x,y,z)\,dz\,dy\,dx. \]

Properties
  • $\displaystyle \iint_{\mathcal R} (f + g)\,dA = \iint_{\mathcal R} f\,dA + \iint_{\mathcal R} g\,dA$
  • $\displaystyle \iint_{\mathcal R} cf\,dA = c\iint_{\mathcal R} f\,dA$
  • $\displaystyle \iint_{\mathcal R} c\,dA = c\operatorname{Area}(\mathcal R)$.
Example

Let $E = [-1,1]^3$. Which of the following triple integrals is $0$?

\[ \begin{align*}&\iiint\limits_E (1 - x)\,dV & \iiint\limits_E e^{-yz}\,dV \\ &\iiint\limits_E yz^2\,dV & \iiint\limits_E x^2\,dV \end{align*}\]

Demo. Use the density feature to visualize the different integrands above.

Order of Integration

Example

Let $\mathcal E$ be the solid region in the first octant of $\RR^3$ bound by the surfaces $x + z = 1$ and $y = x^2$. Write the triple integral \[\iiint\limits_{\mathcal E} f\,dV\] as an iterated integral at least 2 ways.

Solution.

\[ \int_{0}^{1} \int_{0}^{x^2}\int_{0}^{1-x} f(x,y,z)\,dz\,dy\,dx \] \[ \int_{0}^{1} \int_{\sqrt y}^{1}\int_{0}^{1-x} f(x,y,z)\,dz\,dx\,dy \]

Coordinate Systems

Polar Coordinates

\[\begin{align*} x &= r \cos \theta \\ y &= r \sin \theta \\ \end{align*}\]

\[\begin{align*} 0 &\leq r \lt \infty \\ 0 &\leq \theta < 2\pi \end{align*}\]

Areas

Consider a region with bounded polar coordinates $r_1 \leq r \leq r_2$ and $\theta_1 \leq \theta \leq \theta_2$.

\[ \Delta A = \frac12 r_2^2 (\theta_2 - \theta_1) - \frac12 r_1^2 (\theta_2 - \theta_1) \]

\[ \Delta A = \frac{r_1 + r_2}{2} (r_2 - r_1) (\theta_2 - \theta_1) \]

\[ \Delta A = \bar r\,\Delta r\, \Delta \theta \]

\[ \longrightarrow \]

\[dA = r\,dr\,d\theta\]

Converting Integrals

If $\mathcal R \subset \RR^2$ can be described with $\theta_1 \leq \theta \leq \theta_2$ and $g(\theta) \leq r \leq h(\theta)$ in polar coordinates, then \[ \iint\limits_{\mathcal R} f(x,y)\,dA = \int_{\theta_1}^{\theta_2} \int_{g(\theta)}^{h(\theta)} f(r \cos \theta, r\sin \theta)\,r\,dr\,d\theta \]

Remember to convert all parts of the integral:

  • Where? the limits of integration
  • What? the integrand
  • How? the differential
Example

Solve the volume problem from Lec 14 using a polar integral.

Solution. \[ V = \int_0^{\pi/2}\int_0^2 (4 - r^2)\,r\,dr\,d\theta = 2\pi \]

Cylindrical Coordinates

\[\begin{align*} x &= r \cos \theta \\ y &= r \sin \theta \\ z &= z \\ \end{align*}\]

\[\begin{align*} 0 &\leq r \lt \infty \\ 0 &\leq \theta < 2\pi \\ -\infty &< z < \infty \end{align*}\]

Volumes

Consider a region with bounded cylindrical coordinates $r_1 \leq r \leq r_2$, $\theta_1 \leq \theta \leq \theta_2$, and $z_1 \leq z \leq z_2$.

\[ \Delta V = \frac12 (r_2^2 - r_1^2) (\theta_2 - \theta_1) (z_2 - z_1) \]

\[ \Delta V = \bar r\,\Delta r\, \Delta \theta\,\Delta z \]

\[ \longrightarrow \]

\[dV = r\,dz\,dr\,d\theta\]

Spherical Coordinates

\[\begin{align*} x &= \rho \sin \phi \cos \theta \\ y &= \rho \sin \phi \sin \theta \\ z &= \rho \cos \phi \\ \end{align*}\]

\[\begin{align*} 0 &\leq \rho \lt \infty \\ 0 &\leq \theta < 2\pi \\ 0 &\leq \phi \leq \pi \end{align*}\]

Example

Write the point $(-1, -1, 1)$ in cylindrical and spherical coordinates.

Volumes

Consider a region with bounded spherical coordinates $\rho_1 \leq \rho \leq \rho_2$, $\theta_1 \leq \theta \leq \theta_2$, and $\phi_1 \leq \phi \leq \phi_2$.

\[ \Delta V \approx (\Delta \rho)(\rho\Delta\phi)(\rho \sin \phi \Delta \theta) \]

\[ \longrightarrow \]

\[dV = \rho^2 \sin \phi \,d\rho\,d\phi\,d\theta\]

Practice

Example

Sketch the region of integration in the definite integral below and then evaluate it using polar coordinates. \[\int_0^1\int_{\sqrt{1-x^2}}^{\sqrt{4-x^2}} x\,dy\,dx + \int_1^2\int_{0}^{\sqrt{4-x^2}} x\,dy\,dx \]

Solution \[ \int_0^{\pi/2} \int_1^2 r^2\cos\theta\,dr\,d\theta = \frac73 \]

Example

Find the total mass of a solid region that is a right cone with base radius $R$, height $h$, and constant density $\mu$.

Solution. \[ \int_0^{2\pi} \int_0^R \int_0^{h - \frac{h}{R}r} \mu r \,dz\,dr\,d\theta = 2 \pi \mu (hr^2/2 - h r^3/(3R))\Big\vert_0^R\] \[ = \frac13 \pi R^2 h \mu \]

Example

Find the average $z$ coordinate of the "half-ball" \[ \begin{cases} x^2 + y^2 +z^2 \leq R^2 \\ z \geq 0 \end{cases}. \]

We define the average value of a function $f$ on a region $\mathcal E$ to be \[ f_{\text{avg}} = \frac{\iiint_{\mathcal E} f\,dV}{\iiint_{\mathcal E} \,dV} \]

Solution.

We know the total volume is $\frac23 \pi R^3$.

\[ \iiint\limits_{\mathcal E} z\,dV = \int_0^{2\pi}\int_0^{\pi/2} \int_0^R (\rho \cos \phi)\rho^2 \sin \phi \,d\rho\,d\phi\,d\theta\]

\[ = 2\pi \frac{R^4}{4} \int_0^{\pi/2}\sin\phi \cos\phi\,d\phi = \frac14 \pi R^4 \]

Dividing, we get $z_\text{avg} = \frac38 R$.

Learning Outcomes

You should be able to...
  • Convert a specific point's coordinates between rectangular/cylindrical/spherical coordinates.
  • Convert a general expression in rectangular coordinates into cylindrical and spherical coordinates.
  • Select an appropriate coordinate system, convert, and compute for multiple integrals.
  • Explain the role of the Jacobian term in area/volume integrals.
  • Recognize and formulate expressions for planes, cones, cylinders, and spheres in various coordinate systems.